Switching methods for the construction of cospectral graphs

Robin Simoens

Universitat Politècnica de Catalunya & Ghent University

Joint work with Aida Abiad (TU/e) and Nils van de Berg (TU/e)

Cospectral graphs

Both graphs have spectrum $\{-2, 0, 0, 0, 2\}.$

Cospectral graphs

Both graphs have spectrum $\{-2, 0, 0, 0, 2\}$.

Definition

Graphs with the same spectrum are cospectral.

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

➤ Interesting for complexity theory

Figure: Is graph isomorphism an easy or hard problem?

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

➤ Interesting for complexity theory ➤ Interesting for chemistry

Figure: The molecular graph of acetaldehyde (ethanal).

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- ➤ Interesting for complexity theory
- ➤ Interesting for chemistry

 $\ddot{\mathbf{r}}$ Almost all trees are not determined by their spectrum [Schwenk, 1973]

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- ➤ Interesting for complexity theory
- ➤ Interesting for chemistry

 $\ddot{\mathbf{r}}$ Almost all trees are **not** determined by their spectrum [Schwenk, 1973]

 $\left(\frac{1}{2}\right)$ Exponentially many graphs are **not** determined by their spectrum [Haemers and Spence, 2004]

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- ➤ Interesting for complexity theory
- ➤ Interesting for chemistry

 $\ddot{\mathbf{r}}$ Almost all trees are **not** determined by their spectrum [Schwenk, 1973]

 $\left(\frac{1}{2}\right)$ Exponentially many graphs are **not** determined by their spectrum [Haemers and Spence, 2004]

Computational evidence [Brouwer and Spence, 2009]

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- ➤ Interesting for complexity theory
- ➤ Interesting for chemistry

 $\ddot{\mathbf{r}}$ Almost all trees are **not** determined by their spectrum [Schwenk, 1973]

 $\left(\frac{1}{2}\right)$ Exponentially many graphs are **not** determined by their spectrum [Haemers and Spence, 2004]

Computational evidence [Brouwer and Spence, 2009]

 \bullet Exponentially many graphs are determined by their spectrum [Koval and Kwan, 2023]

Definition

Two graphs with adjacency matrices \overline{A} and \overline{A}^\prime such that

```
A + rJ and A' + rJ
```
have the same spectrum for all $r \in \mathbb{R}$, are \mathbb{R} -cospectral.

Definition

Two graphs with adjacency matrices \overline{A} and \overline{A}^\prime such that

$$
A + rJ \quad \text{and} \quad A' + rJ
$$

have the same spectrum for all $r \in \mathbb{R}$, are \mathbb{R} -cospectral.

Definition

Two graphs with adjacency matrices \overline{A} and \overline{A}^\prime such that

```
A + rJ and A' + rJ
```
have the same spectrum for all $r \in \mathbb{R}$, are \mathbb{R} -cospectral.

Theorem (Johnson and Newman, 1980)

Let Γ and Γ' be two graphs with adjacency matrices A and A'. The following are equivalent:

- $\blacktriangleright \Gamma$ and Γ' are $\mathbb R$ -cospectral.
- $\blacktriangleright \Gamma$ and Γ' are cospectral and so are their complements.
- \blacktriangleright There is a **regular orthogonal** matrix Q such that $A' = Q^T A Q$.

Definition

Two graphs with adjacency matrices \overline{A} and \overline{A}^\prime such that

```
A + rJ and A' + rJ
```
have the same spectrum for all $r \in \mathbb{R}$, are \mathbb{R} -cospectral.

Theorem (Johnson and Newman, 1980)

Let Γ and Γ' be two graphs with adjacency matrices A and A'. The following are equivalent:

- $\blacktriangleright \Gamma$ and Γ' are $\mathbb R$ -cospectral.
- $\blacktriangleright \Gamma$ and Γ' are cospectral and so are their complements.
- \blacktriangleright There is a **regular orthogonal** matrix Q such that $A' = Q^T A Q$.

 Q is **regular orthogonal** $\Longleftrightarrow Q^TQ = I$ and $Q\textbf{1}=r\textbf{1}$

Definition

Two graphs with adjacency matrices \overline{A} and \overline{A}^\prime such that

```
A + rJ and A' + rJ
```
have the same spectrum for all $r \in \mathbb{R}$, are \mathbb{R} -cospectral.

Theorem (Johnson and Newman, 1980)

Let Γ and Γ' be two graphs with adjacency matrices A and A'. The following are equivalent:

- $\blacktriangleright \Gamma$ and Γ' are $\mathbb R$ -cospectral.
- $\blacktriangleright \Gamma$ and Γ' are cospectral and so are their complements.

 \blacktriangleright There is a **regular orthogonal** matrix Q such that $A' = Q^T A Q$.

 Q is **regular orthogonal** $\Longleftrightarrow Q^TQ = I$ and $Q\textbf{1}=r\textbf{1}$

$$
\implies r = \pm 1 \quad \text{w.l.o.g. } \boxed{r = 1} \quad \frac{4}{21}
$$

Conjecture

Almost all graphs are determined by their spectrum and the spectrum of their complement.

Conjecture

Almost all graphs are determined by their spectrum and the spectrum of their complement.

 \bullet Sufficient condition for a graph to be determined by its spectrum and the spectrum of its complement [Wang and Xu, 2006]

Conjecture

Almost all graphs are determined by their spectrum and the spectrum of their complement.

Sufficient condition for a graph to be determined by its spectrum and the spectrum of its complement [Wang and Xu, 2006] \heartsuit Evidence that a positive fraction of all $\mathbb R$ -cospectral graphs are semi-isomorphic [Wang and Xu, 2010]

Conjecture

Almost all graphs are determined by their spectrum and the spectrum of their complement.

Sufficient condition for a graph to be determined by its spectrum and the spectrum of its complement [Wang and Xu, 2006] \heartsuit Evidence that a positive fraction of all $\mathbb R$ -cospectral graphs are semi-isomorphic [Wang and Xu, 2010]

Definition

Graphs with adjacency matrices A and A' are semi-isomorphic if $A' = Q^T A Q$ for a regular orthogonal matrix Q of **level 2.**

Conjecture

Almost all graphs are determined by their spectrum and the spectrum of their complement.

 \bullet Sufficient condition for a graph to be determined by its spectrum and the spectrum of its complement [Wang and Xu, 2006] \bullet Evidence that a positive fraction of all R-cospectral graphs are semi-isomorphic [Wang and Xu, 2010]

Definition

Graphs with adjacency matrices A and A' are semi-isomorphic if $A' = Q^T A Q$ for a regular orthogonal matrix Q of level 2.

Q has level $\ell \leftrightarrow \ell$ is the smallest integer such that ℓQ is integral

Conjecture

Almost all graphs are determined by their spectrum and the spectrum of their complement.

 \bullet Sufficient condition for a graph to be determined by its spectrum and the spectrum of its complement [Wang and Xu, 2006] \bullet Evidence that a positive fraction of all R-cospectral graphs are semi-isomorphic [Wang and Xu, 2010]

Definition

Graphs with adjacency matrices A and A' are semi-isomorphic if $A' = Q^T A Q$ for a regular orthogonal matrix Q of level 2.

Q has level $\ell \Longleftrightarrow \ell$ is the smallest integer such that ℓQ is integral level 1 \Longleftrightarrow Q is a permutation matrix

Conjecture

Almost all graphs are determined by their spectrum and the spectrum of their complement.

 \bullet Sufficient condition for a graph to be determined by its spectrum and the spectrum of its complement [Wang and Xu, 2006] \bullet Evidence that a positive fraction of all R-cospectral graphs are semi-isomorphic [Wang and Xu, 2010]

Definition

Graphs with adjacency matrices A and A' are semi-isomorphic if $A' = Q^T A Q$ for a regular orthogonal matrix Q of level 2.

Q has level $\ell \leftrightarrow \ell$ is the smallest integer such that ℓQ is integral level $2 \iff ?$

Regular orthogonal matrices of level 2

Theorem (Chan, Rodger and Seberry, 1986)

Up to permutations of rows and columns, an indecomposable regular orthogonal matrix of level 2 and row sum 1 is one of the following:

$$
(i) \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}, (ii) \frac{1}{2} \begin{bmatrix} J & O & \cdots & \cdots & O & Y \\ Y & J & O & \cdots & \cdots & O \\ 0 & Y & J & O & \cdots & O \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ O & \cdots & O & Y & J & O \\ O & \cdots & O & Y & J & O \end{bmatrix},
$$

$$
(iii) \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & -1 & 1 \end{bmatrix}, (iv) \frac{1}{2} \begin{bmatrix} -I & I & I & I \\ I & -Z & I & Z \\ I & -Z & I & Z \\ I & Z & -Z & I \\ I & I & Z & -Z \end{bmatrix},
$$

where I, J, O, $Y = 2I - J$ and $Z = J - I$, are 2×2 matrices.

▶ A. Abiad and W.H. Haemers, Cospectral Graphs and Regular Orthogonal Matrices of Level 2. Electron. J. Comb. 19 (2012), P13.

➤ L. Mao, W. Wang, F. Liu and L. Qiu, Constructing cospectral graphs via regular rational orthogonal matrices with level two. Discrete Math. 346 (2023), 113156.

1 [Cospectral graphs](#page-1-0)

- 2 [Switching methods](#page-24-0)
- 3 [Asymptotic bounds](#page-49-0)

Definition

A switching method is a graph operation, resulting in a cospectral graph. It needs a switching set with some conditions.

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a subgraph C such that:

 \blacktriangleright C is regular.

▶ Every vertex outside C has $0, \frac{1}{2}$ $\frac{1}{2}|C|$ or $|C|$ neighbours in $C.$ For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C , reverse its adjacencies with C. The resulting graph is $\mathbb R$ -cospectral with Γ .

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a subgraph C such that:

 \blacktriangleright C is regular.

▶ Every vertex outside C has $0, \frac{1}{2}$ $\frac{1}{2}|C|$ or $|C|$ neighbours in $C.$ For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C , reverse its adjacencies with C. The resulting graph is $\mathbb R$ -cospectral with Γ .

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a subgraph C such that:

 \blacktriangleright C is regular.

► Every vertex outside C has $\frac{1}{2}$ $\frac{1}{2}|C|$ or $|C|$ neighbours in C .

For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C , reverse its adjacencies with C. The resulting graph is $\mathbb R$ -cospectral with Γ .

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a subgraph C such that:

 \blacktriangleright C is regular.

► Every vertex outside C has $\frac{1}{2}$ $\frac{1}{2}|C|$ or $|C|$ neighbours in C .

For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C , reverse its adjacencies with C. The resulting graph is $\mathbb R$ -cospectral with Γ .

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a subgraph C such that:

 \blacktriangleright C is regular.

► Every vertex outside C has $0, \frac{1}{2}$ $\frac{1}{2}|C|$ or $|C|$ neighbours in $C.$ For every $v \notin C$ that has exactly $\frac{1}{2}|C|$ neighbours in C , reverse its adjacencies with C. The resulting graph is $\mathbb R$ -cospectral with Γ .

Proof.

$$
\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} \frac{2}{|C|}J - I & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} \frac{2}{|C|}J - I & O \\ O & I \end{pmatrix}.
$$

Theorem (Wang, Qiu and Hu, 2019)

Let Γ be a graph with disjoint subgraphs C_1, C_2 such that:

- \blacktriangleright $|C_1| = |C_2|$.
- \blacktriangleright There is a constant c such that, for every vertex of C_i , the number of neighbours in C_i minus the number of neighbours in C_j , is c .
- ► Every vertex outside $C_1 \cup C_2$ has either:
	- ighthours in C_1 and $|C_2|$ in C_2 ,
	- \blacktriangleright $|C_1|$ neighbours in C_1 and 0 in C_2 ,
	- ightharpoonup variable uses in C_1 and C_2 .

Theorem (Wang, Qiu and Hu, 2019)

Let Γ be a graph with disjoint subgraphs C_1, C_2 such that:

 \blacktriangleright $|C_1| = |C_2|$.

- \blacktriangleright There is a constant c such that, for every vertex of C_i , the number of neighbours in C_i minus the number of neighbours in C_j , is c .
- ► Every vertex outside $C_1 \cup C_2$ has either:
	- ighthours in C_1 and $|C_2|$ in C_2 ,
	- \blacktriangleright $|C_1|$ neighbours in C_1 and 0 in C_2 ,
	- ightharpoonup variable uses in C_1 and C_2 .

Theorem (Wang, Qiu and Hu, 2019)

Let Γ be a graph with disjoint subgraphs C_1, C_2 such that:

 \blacktriangleright $|C_1| = |C_2|$.

 \blacktriangleright There is a constant c such that, for every vertex of C_i , the number of neighbours in C_i minus the number of neighbours in C_j , is c.

► Every vertex outside $C_1 \cup C_2$ has either:

- ighthours in C_1 and $|C_2|$ in C_2 ,
- \blacktriangleright $|C_1|$ neighbours in C_1 and 0 in C_2 ,
- ightharpoonup variable units in C_1 and C_2 .

Theorem (Wang, Qiu and Hu, 2019)

Let Γ be a graph with disjoint subgraphs C_1, C_2 such that:

 \blacktriangleright $|C_1| = |C_2|$.

 \blacktriangleright There is a constant c such that, for every vertex of C_i , the number of neighbours in C_i minus the number of neighbours in C_j , is c.

► Every vertex outside $C_1 \cup C_2$ has either:

- ighthours in C_1 and $|C_2|$ in C_2 ,
- \blacktriangleright $|C_1|$ neighbours in C_1 and 0 in C_2 ,
- equally many neighbours in C_1 and C_2 .

Theorem (Wang, Qiu and Hu, 2019)

Let Γ be a graph with disjoint subgraphs C_1, C_2 such that:

 \blacktriangleright $|C_1| = |C_2|$.

 \blacktriangleright There is a constant c such that, for every vertex of C_i , the number of neighbours in C_i minus the number of neighbours in C_j , is c.

► Every vertex outside $C_1 \cup C_2$ has either:

- ighthours in C_1 and $|C_2|$ in C_2 ,
- \blacktriangleright $|C_1|$ neighbours in C_1 and 0 in C_2 ,
- equally many neighbours in C_1 and C_2 .

Level 2 switching methods

Theorem (Chan, Rodger and Seberry, 1986)

Up to permutations of rows and columns, an indecomposable regular orthogonal matrix of level 2 and row sum 1 is one of the following:

where I, J, O, $Y = 2I - J$ and $Z = J - I$, are 2×2 matrices.

Level 2 switching methods

Theorem (Chan, Rodger and Seberry, 1986)

Up to permutations of rows and columns, an indecomposable regular orthogonal matrix of level 2 and row sum 1 is one of the following:

$$
(ii) \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}, (ii) \frac{1}{2} \begin{bmatrix} J & O & \cdots & \cdots & O \\ Y & J & O & \cdots & \cdots & O \\ O & Y & J & O & \cdots & O \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & O \\ O & \cdots & O & Y & J & O \\ O & \cdots & O & Y & J & O \\ O & \cdots & \cdots & O & Y & J \end{bmatrix},
$$

\n
$$
(iii) \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 1 & 1 & 0 \\ 1 & 0 & 0 & -1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}, (iv) \frac{1}{2} \begin{bmatrix} -I & I & I & I \\ I & -Z & I & Z \\ I & Z & -Z & I \\ I & I & Z & -Z \end{bmatrix},
$$

where I, J, O, $Y = 2I - J$ and $Z = J - I$, are 2×2 matrices.

Theorem (Abiad and Haemers, 2012)

Let Γ be a graph with a vertex partition $\{C_1, C_2, C_3, D\}$ such that:

- \triangleright The induced subgraph on $C_1 \cup C_2 \cup C_3$ is
- \blacktriangleright Every vertex in D has the same number of neighbours in C_1 , C_2 and C_3 mod 2.

.

Let π be the permutation on $C_1 \cup C_2 \cup C_3$ that shifts the vertices cyclically to the right. For every $v\in D$ that has exactly one neighbour w in each $C_i,$ replace each edge $\{v, w\}$ by $\{v, \pi(w)\}.$

Replace the induced subgraph on $C_1 \cup C_2 \cup C_3$ by The resulting graph is $\mathbb R$ -cospectral with Γ .

Theorem (Abiad and Haemers, 2012)

Let Γ be a graph with a vertex partition $\{C_1, C_2, C_3, D\}$ such that:

- \triangleright The induced subgraph on $C_1 \cup C_2 \cup C_3$ is
- \blacktriangleright Every vertex in D has the same number of neighbours in C_1 , C_2 and C_3 mod 2.

.

Let π be the permutation on $C_1 \cup C_2 \cup C_3$ that shifts the vertices cyclically to the right. For every $v\in D$ that has exactly one neighbour w in each $C_i,$ replace each edge $\{v, w\}$ by $\{v, \pi(w)\}.$

Replace the induced subgraph on $C_1 \cup C_2 \cup C_3$ by The resulting graph is $\mathbb R$ -cospectral with Γ .

Theorem (Abiad and Haemers, 2012)

Let Γ be a graph with a vertex partition $\{C_1, C_2, C_3, D\}$ such that:

 \triangleright The induced subgraph on $C_1 \cup C_2 \cup C_3$ is

 \blacktriangleright Every vertex in D has the same number of neighbours in C_1 , C_2 and C_3 mod 2

Let π be the permutation on $C_1 \cup C_2 \cup C_3$ that shifts the vertices cyclically to the right. For every $v\in D$ that has exactly one neighbour w in each $C_i,$ replace each edge $\{v, w\}$ by $\{v, \pi(w)\}.$

Replace the induced subgraph on $C_1 \cup C_2 \cup C_3$ by The resulting graph is $\mathbb R$ -cospectral with Γ .

.

Theorem (Abiad and Haemers, 2012)

Let Γ be a graph with a vertex partition $\{C_1, C_2, C_3, D\}$ such that:

 \triangleright The induced subgraph on $C_1 \cup C_2 \cup C_3$ is

 \blacktriangleright Every vertex in D has the same number of neighbours in C_1 , C_2 and C_3 mod 2

.

Let π be the permutation on $C_1 \cup C_2 \cup C_3$ that shifts the vertices cyclically to the right. For every $v\in D$ that has exactly one neighbour w in each $C_i,$ replace each edge $\{v, w\}$ by $\{v, \pi(w)\}.$

Replace the induced subgraph on $C_1 \cup C_2 \cup C_3$ by The resulting graph is $\mathbb R$ -cospectral with Γ .

12/21

Proposition (Abiad, van de Berg and Simoens, 2024+)

Every switching that corresponds to a conjugation with the matrix

$$
\frac{1}{2} \begin{bmatrix} J & O & O & Y \\ Y & J & O & O \\ O & Y & J & O \\ O & O & Y & J \end{bmatrix}
$$

can be obtained by repeated GM- and AH-switching.

Theorem (Abiad, van de Berg and Simoens, 2024+)

Let Γ be a graph with a vertex partition $\{C_1, C_2, C_3, C_4, C_5, D\}$ such that:

$$
|C_1| = |C_2| = |C_3| = |C_4| = |C_5| = 2.
$$

Every vertex in D has the same number of neighbours in C_1 , C_2 , C_3 , C_4 and C_5 modulo 2.

Let π be the permutation on $C_1 \cup \cdots \cup C_5$ that shifts the vertices cyclically to the right. For every $v\notin C$ that has exactly one neighbour w in each $C_i,$ replace each edge $\{v, w\}$ by $\{v, \pi(w)\}.$ For all $i \in \mathbb{Z}/5\mathbb{Z}$, replace the induced subgraph on $C_i \cup C_{i+2}$ by the former induced subgraph on $C_{i-1} \cup C_{i+2}$. The resulting graph is $\mathbb R$ -cospectral with Γ .

Theorem (Abiad, van de Berg and Simoens, 2024+)

Let Γ be a graph with a vertex partition $\{C_1, \cdots, C_m, D\}$, m odd, such that:

- \blacktriangleright $|C_1| = \cdots = |C_m| = 2.$
- ► Every vertex in D has the same number of neighbours in C_1 , C_2 , C_3 , C_4 and C_5 modulo 2.
- ▶ For all $i, j \in \mathbb{Z}/m\mathbb{Z}$ with $j \in \{i+1, \ldots, i+\frac{m-1}{2}\}, C_i \cup C_j$ is

Let π be the permutation on $C_1 \cup \cdots \cup C_m$ that shifts the vertices cyclically to the right. For every $v\notin C$ that has exactly one neighbour w in each $C_i,$ replace each edge $\{v, w\}$ by $\{v, \pi(w)\}.$ For all $i \in \mathbb{Z}/m\mathbb{Z}$, replace the induced subgraph on $C_i \cup C_{i+\frac{m-1}{2}}$ by the former induced subgraph on $C_{i-1}\cup C_{i+\frac{m-1}{2}}.$ The resulting graph is $\mathbb R$ -cospectral with Γ .

Theorem (Abiad, van de Berg and Simoens, 2024+)

Let Γ be a graph with a vertex partition $\{C_1, \cdots, C_m, D\}$, $m \geq 4$, such that:

- \blacktriangleright $|C_1| = \cdots = |C_m| = 2.$
- Every vertex in D has the same number of neighbours in C_1 , C_2 , C_3 , C_4 and C_5 modulo 2.
- ► The induced subgraph on $C_1 \cup \cdots \cup C_m$ is

Let π be the permutation on $C_1 \cup \cdots \cup C_m$ that shifts the vertices cyclically to the right. For every $v\notin C$ that has exactly one neighbour w in each $C_i,$ replace each edge $\{v, w\}$ by $\{v, \pi(w)\}.$ Replace the induced subgraph on $C_1 \cup \cdots \cup C_m$ by

The resulting graph is $\mathbb R$ -cospectral with Γ .

- ➤ Classification of level 2 switching methods with blocks up to size 12:
	- ➤ 4 vertices: 1 type; GM-/WQH-switching
	- ➤ 6 vertices: 1 type; AH-switching
	- ➤ 8 vertices: 0 types; always reducible
	- ▶ 10 vertices: 3 types
	- ▶ 12 vertices: 18 types

 \blacktriangleright Three new general switching methods with blocks of size $2m$

Asymptotic bounds

Let g_n denote the number of graphs on *n* vertices.

Theorem (Haemers and Spence, 2004)

At least $n^3 g_{n-1}\left(\frac{1}{24}+o(1)\right)$ graphs on n vertices are not determined by their spectrum.

Asymptotic bounds

Let g_n denote the number of graphs on n vertices.

Theorem (Haemers and Spence, 2004)

At least $n^3 g_{n-1}\left(\frac{1}{24}+o(1)\right)$ graphs on n vertices are not determined by their spectrum.

Theorem (Abiad, van de Berg and Simoens, 2024+)

There are $n^3 g_{n-1} \left(\frac{1}{24} + o(1)\right)$ graphs on n vertices with a GM-switching set of size 4.

Asymptotic bounds

Let g_n denote the number of graphs on n vertices.

Theorem (Haemers and Spence, 2004)

At least $n^3 g_{n-1}\left(\frac{1}{24}+o(1)\right)$ graphs on n vertices are not determined by their spectrum.

Theorem (Abiad, van de Berg and Simoens, 2024+)

There are $n^3 g_{n-1} \left(\frac{1}{24} + o(1)\right)$ graphs on n vertices with a GM-switching set of size 4.

Theorem (Abiad, van de Berg and Simoens, 2024+)

There are between

$$
n^4g_{n-2}(\frac{1}{72}-o(1))
$$
 and $n^4g_{n-2}(\frac{11}{8})^{n-6}(2^9+o(1))$

graphs on n vertices with a WQH-switching set of size 6.

➤ Asymptotic bounds on Abiad-Haemers switching

- ▶ Asymptotic bounds on Abiad-Haemers switching
- ➤ Numerical experiments with new switching methods

- ➤ Asymptotic bounds on Abiad-Haemers switching
- ➤ Numerical experiments with new switching methods
- ▶ Sporadic 8 vertex switching
- ▶ Fano switching

$$
\begin{bmatrix} -1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}
$$

- ➤ Asymptotic bounds on Abiad-Haemers switching
- ➤ Numerical experiments with new switching methods
- ➤ Sporadic 8 vertex switching
- ▶ Fano switching

Open problems:

➤ Classification of regular orthogonal matrices of level 3

- ➤ Asymptotic bounds on Abiad-Haemers switching
- ➤ Numerical experiments with new switching methods
- ▶ Sporadic 8 vertex switching
- ▶ Fano switching

Open problems:

- ➤ Classification of regular orthogonal matrices of level 3
- ➤ Mixed switching

Thank you for listening!

